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Abstract. The equilibrium short-range order (SRO) in Cu–Pd alloys is studied theoretically.
The evolution of the Fermi surface-related splitting of the (110) diffuse intensity peak with
changing temperature is examined. The results are compared with experimental observations
for electron-irradiated samples in a steady state, for which the temperature dependence of the
splitting was previously found in the composition range from 20 to 28 at.% Pd. The equilibrium
state is studied by analysing available experimental and theoretical results and using a recently
proposed alpha-expansion theory of SRO which is able to describe the temperature-dependent
splitting. It is found that the electronic structure calculations in the framework of the Korringa–
Kohn–Rostoker coherent potential approximation overestimate the experimental peak splitting.
This discrepancy is attributed to the shift of the intensity peaks with respect to the positions of the
corresponding reciprocal-space minima of the effective interatomic interaction towards the (110)
and equivalent positions. Combined with an assumption about monotonicity of the temperature
behaviour of the splitting, such a shift implies an increase of the splitting with increasing
temperature for all compositions considered in this study. The alpha-expansion calculations
seem to confirm this conclusion.

1. Introduction

Almost a decade ago, Kuliket al [1] published their experimental results on electron
diffraction from irradiated Cu–Pd alloys. In that study samples with 20, 22, 24 and 28
at.% Pd were maintained by high-energy electron irradiation in a steady disordered state
away from their thermal equilibrium state at temperatures between 200 and 400 K. At
these temperatures and compositions, equilibrium Cu–Pd alloys exhibit long-range order;
the disordered state occurs only at much higher temperatures. In the equilibrium disordered
state the intensity of diffuse scattering from Cu–Pd alloys with more than about 15 at.% Pd
is characterized by the fourfold splitting of intensity peaks located at the (100), (110) and
equivalent positions in the reciprocal space [1–7]. The resulting diffuse intensity distribution
has maxima at the(1q0) and equivalent positions (figure 1); the value ofq increases with
increasing Pd concentration. This fine structure of the diffuse scattering is caused by the
atomic short-range order (SRO) and is a result of the indirect interaction of alloy atoms
through conduction electrons in a situation in which an alloy has a reasonably well-defined
Fermi surface with relatively flat areas [8, 9]. In this case the corresponding minima of
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the effective pair interatomic interaction in the reciprocal space are also split, and their
separation is related to the wavevector 2kF which spans these flat areas of the Fermi
surface.

Figure 1. A schematic reciprocal-space picture of scattering from disordered Cu–Pd alloys.
Large dots represent the Bragg reflections. Small dots correspond to the split diffuse intensity
peaks.

Similar splitting of the diffuse intensity peaks was observed in the non-equilibrium
steady disordered state under irradiation [1]. In addition to the expected concentration
dependence ofq, its variation with irradiation temperature was found. Even more curious
was the qualitative change of the temperature dependence of the splitting with concentration:
q decreased with increasing temperature in the case of 20, 22 and 24 at.% Pd, but this
trend was reversed for the alloy with 28 at.% Pd for which an increase of the peak
separation with temperature was found. At the same time, there was an increase of the
scattering intensity with increasing temperature for all four compositions, contrary to the
case of alloys at equilibrium where the intensity decreases with increasing temperature.
A qualitative explanation of the temperature dependence of the splitting was proposed as
follows. Firstly, the behaviour of the equilibrium SRO diffuse intensity in the case of the
exactly solvable one-dimensional Ising model with competing antiferromagnetic nearest- and
next-nearest-neighbour interactions was studied. It turned out that the peak positions varied
with temperature. This result is in contrast with the mean-field-related Krivoglaz–Clapp–
Moss (KCM) treatment [8, 10] which predicts temperature-independent peak positions at
the minima of the interaction. As the intensity increased with decreasing temperature, the
peak positions shifted towards the wavevector of the corresponding ground state. A similar
result was obtained earlier for the two-dimensional ANNNI model using the cluster variation
method [11]. It was concluded that the temperature dependence of the peak positions is a
phenomenon which cannot be understood in the framework of mean-field theory. Secondly,
the assumption was made that the behaviour of the diffuse intensity in irradiated Cu–Pd
alloys was analogous to that of the equilibrium one-dimensional model. The only qualitative
difference between the two cases was the opposite roles played by temperature. Based on
this ‘inverse-temperature hypothesis’, the conclusion was drawn that one might expect to
find the increase inq with temperature for the Cu–Pd alloy system at equilibrium. Here
it may be added that the reversal of the temperature behaviour of the peak splitting could
be expected according to this hypothesis as concentration increases, from the increase with
temperature for 20, 22 and 24 at.% Pd to the decrease for 28 at.% Pd.

Last year, such an increase of the peak separation with temperature was observed
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at equilibrium by Reichertet al [12] for the disordered Cu3Au alloy. Moss and
Reichert [13, 14] found the same behaviour by analysing the Monte Carlo simulation
results of Roelofset al [15] for the Cu–14.4 at.% Al alloy. In the latter work the inverse
Monte Carlo pair interactions were determined from the experimental diffuse intensity at a
single temperature and subsequently used to generate the Monte Carlo intensities at other
temperatures. The theory of the temperature dependence of the splitting was proposed
by Tsatskis [14, 16]; it identifies the wavevector dependence of the self-energy of the
pair correlation function (PCF) as the origin of this effect. The self-energy6(k) and the
interaction term 2βV (k) enter the expression for the SRO diffuse intensity on an equal
footing (equation (2.1a) below). In the KCM approximation the fact that the self-energy
is a function ofk is ignored. Apart from the observed increase inq with temperature, the
possibility of the opposite behaviour, i.e., the decrease of the peak separation as temperature
increases, was predicted. This is exactly what should be expected under equilibrium
conditions for the Cu–28 at.% Pd alloy, if the inverse-temperature hypothesis is valid,
although such temperature dependence was never seen experimentally. The possibility of
the reversal of the temperature dependence of the peak splitting with increasing concentration
seems to be indicated also by the results of the Monte Carlo simulations of Ozolin¸s̆ et al
[17] for the first-principles alloy Hamiltonian with pair and multiatom interactions (25 at.%
Pd) and the x-ray scattering measurements of Reichertet al [7] (29.8 at.% Pd). In both
cases no (or a very small) change of the splitting with changing temperature was found.

The idea of the present study is to gain further insight into the behaviour of Cu–Pd
alloys under irradiation by studying theoretically the evolution of the diffuse peak splitting
with changing temperature in these alloys at equilibrium. More exactly, the aim is to
find out whether the splitting increases with temperature in the range from 20 to 24 at.%
Pd as the inverse-temperature hypothesis implies and whether this behaviour is reversed
as concentration increases to 28 at.% Pd. Starting from the experimental SRO diffuse
intensity measured at a particular temperature, we first solve the inverse scattering problem
and calculate the effective interaction which is assumed to be pairwise and temperature
independent. Then the direct problem is solved and the self-energy and diffuse intensity
at different temperatures are calculated. The underlying theory of SRO is described in
section 2. Section 3 considers data for Cu–Pd alloys existing in the literature. Finally, the
results are discussed in section 4.

2. Alpha-expansion theory of SRO

We start by describing the theory of SRO which leads to the temperature-dependent
peak splitting and is used in section 4 to relate the SRO diffuse intensities at different
temperatures. This theory is based on the alpha expansion (AE) for the self-energy [16];
the self-energy is the only unknown quantity in the otherwise formally exact expression for
the SRO intensity. The AE is the expansion in powers of SRO parametersαlmn, hence the
name. It was proposed as a generalizatiion of another approach to the calculation of the
self-energy, the gamma-expansion method (GEM) [18–20], to deal with distant interactions
which are essential in the case of the Fermi surface-related splitting. The complete set of
the AE equations has the form

ISRO(k) = 1

c(1− c) [−6(k)+ 2βV (k)]
(2.1a)

6(k) = 6000+
∑

lmn6=000

Zlmn6lmnλlmn(k) (2.1b)
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6lmn = aα2
lmn + bα3

lmn lmn 6= 000 (2.1c)

α000= 1

�

∫
dk ISRO(k) = 1 (2.1d)

αlmn = 1

�

∫
dk ISRO(k)λlmn(k). (2.1e)

In equations (2.1)k is the wavevector,ISRO(k) is the SRO diffuse intensity in Laue units,
c is the concentration,6(k) is the self-energy of the PCFG (the latter is defined by
equation (2.6) below),β = 1/T , T is the temperature in energy units, andV (k) is the
Fourier transform of the pair ordering potential

Vij = 1

2
(V AAij + V BBij )− V ABij . (2.2)

The potentialV αβij corresponds to the interaction between an atom of typeα at site i and
an atom of typeβ at sitej . Further,αlmn, 6lmn, Zlmn and

λlmn(k) = Z−1
lmn

∑
r∈lmn

exp(ik · r) (2.3)

are the SRO parameter, matrix element of the self-energy, coordination number and
shell function for the coordination shelllmn, respectively, whileα000 and 6000 are the
corresponding diagonal matrix elements. The summation in equation (2.1b) is performed
over all coordination shells, whereas that in equation (2.3) is over the lattice vectorsr
belonging to the coordination shelllmn. The integration in equations (2.1d) and (2.1e) is
carried out over the Brillouin zone of volume�. Coefficientsa and b in equation (2.1c)
are functions of concentration,

a = (1− 2c)2

2[c(1− c)]2
(2.4a)

b = [1− 6c(1− c)]2− 3(1− 2c)4

6[c(1− c)]3
. (2.4b)

The SRO parametersα are proportional to the corresponding matrix elements of the PCF
G,

GAA
ij = GBB

ij = −GAB
ij = c(1− c)αij (2.5)

the definition of the PCF being

G
αβ

ij = 〈pαi pβj 〉 − 〈pαi 〉〈pβj 〉 (2.6)

wherepαi is the occupation number,

pαi =
{

1 atom of typeα at lattice sitei

0 otherwise
(2.7)

and angular brackets denote statistical averaging.
The meaning of equations (2.1) is as follows. The first of equations (2.1d) and

equation (2.1e) are the consequences of the fact thatαij is the back Fourier transform of the
intensity ISRO(k). Equation (2.1b) is the relation between the direct- and reciprocal-space
representations of the self-energy. Equations (2.1b) and (2.1e) are written in coordination
shell notations. The second of equations (2.1d) is the well-known sum rule [21] which
reflects the property

pαi p
β

i = pαi δαβ (2.8)
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of the occupation numbers following from their definition (2.7). The less obvious
equation (2.1a) is one of the possible forms of the Dyson equation [22] which is satisfied
by the PCF (2.6); this issue is discussed in considerable detail elsewhere [23]. The key
equation is equation (2.1c) which closes the set of equations (2.1) by expressing the off-
diagonal part of the self-energy in terms of the SRO parameters. Its right-hand side is,
in fact, two first non-zero terms of a series expansion of6lmn in powers of the SRO
parameters. The latter are almost always sufficiently small, which justifies the expansion.
These two terms were previously calculated [19, 20] in the framework of the GEM using
self-consistent renormalization of the bare propagator(βV )−1 in the generating functional
for correlation functions [18]. The resulting expansion for the matrix elements of the self-
energy was in powers of the matrix elements of the fully dressed propagator. This propagator
is the PCF (2.6), and its matrix elements are therefore proportional to the corresponding
SRO parameters. Thus, equations (2.1) form the set of self-consistent equations for the
matrix elements of the self-energy (alternatively,6000 and αlmn, lmn 6= 000, can be
used as independent variables) and constitute the closed-form approximation for SRO. A
particular AE approximation is defined by using equation (2.1c) for only a finite number
of coordination shells and neglecting all other matrix elements of the self-energy. Another
sequence of the AE approximations can be generated in the same way by taking into account
only the lowest-order (quadratic) term in the AE expansion for6lmn and ignoring the third-
order contribution. For the rest of the paper both terms (as in equation (2.1c)) will be used.
The AE is expected to be at least as accurate as the GEM, and the latter was used successfully
in dealing with both direct and inverse diffuse-scattering problems [19, 20, 24], providing
reliable results at almost all temperatures. The zero-order approximation of the AE is the
well-known spherical model (SM) for correlations [25], also known under the name of the
Onsager cavity field theory [26]. In the SM the self-energy is diagonal, i.e., wavevector
independent; the single non-zero matrix element6000 is a function of temperature and
concentration and is determined from the sum rule (2.1d).

In order to use equations (2.1) for calculating the evolution of the diffuse intensity
with temperature and, in particular, the temperature dependence of the peak splitting, it
is necessary to have information about the interactionV . It is assumed here that the
interaction does not depend on temperature in the relevant temperature intervals; on the
other hand, it is clearly concentration dependent, so a separate interaction set is needed
for each alloy composition. We start from the set of the experimental SRO parameters
and calculate the AE interaction in the reciprocal space by solving the inverse diffuse-
scattering problem [19, 20]. This interaction can then be used for calculation of diffuse
intensities at different temperatures and possibly, with much less confidence, at slightly
different concentrations.

To solve the inverse problem, we rewrite equation (2.1a) as an expression for the
interaction:

VAE(k) = T

2

[
I−1
SRO(k)

c(1− c) +6(k)
]
. (2.9)

The SRO diffuse intensity here is recalculated from the set of the experimental SRO
parameters:

ISRO(k) = 1+
∑

lmn6=000

Zlmnαlmnλlmn(k). (2.10)

In equation (2.10) the sum rule (2.1d) was used; otherwise, it is just the Fourier
transformation written in coordination shell notation, similar to equation (2.1b). Substitution
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of equations (2.1b) and (2.1c) into equation (2.9) shows that the only quantity in the resulting
expression forVAE(k) which needs to be expressed in terms of the SRO parameters (or,
equivalently, the SRO intensity) is the diagonal part6000 of the self-energy. The off-
diagonal part of6 is already an explicit function of the SRO parameters (equation (2.1c)).
To find6000, we integrate equation (2.9) over the Brillouin zone; this integration gives the
diagonal direct-space matrix element of the integrand, as in equation (2.1d). The interaction
V is an off-diagonal matrix in the direct space because of the absence of the self-interaction.
Therefore, after the integration the left-hand side of equation (2.9) is zero and, as a result,

6000= −
〈
I−1
SRO

〉
c(1− c) (2.11a)

〈
I−1
SRO

〉 = 1

�

∫
dk I−1

SRO(k). (2.11b)

Thus, equation (2.9) for the AE interaction can be written as

VAE(k) = VSM(k)+ T
2
6od(k) (2.12)

where6od(k) is the Fourier transform of the off-diagonal part of the self-energy defined
by equation (2.1c), and

VSM(k) = T

2c(1− c)
[
I−1
SRO(k)− 〈I−1

SRO〉
]

(2.13)

is the interaction obtained in the framework of the SM, i.e., in the zero-order AE approx-
imation in which the off-diagonal part of the self-energy is zero. Note that, when compared
with the interaction resulting from the KCM expression forISRO(k) [8, 10],

VKCM(k) = T

2c(1− c)
[
I−1
SRO(k)− 1

]
(2.14)

the SM interaction differs, at givenc andT , only by the constant subtracted from the inverse
intensity. Therefore, the off-diagonal direct-space interactions are identical in the KCM and
SM approximations [20]. However, the KCM formula violates the sum rule (2.1d), thus
leading to the appearance of the unphysical self-interaction

V KCM
000 = T

2c(1− c)
[〈I−1

SRO〉 − 1
]

(2.15)

while in the SM, according to equation (2.13), this matrix element is zero. Returning to
equation (2.12), every term in its right-hand side is expressed at this stage in terms of
experimental data, andVAE(k) can be easily calculated.

3. Available data

We now consider previously published experimental and theoretical results for equilibrium
Cu–Pd alloys in the range of concentrations discussed (20 to 30 at.% Pd). These results
are of two types. Firstly, the electron and x-ray diffraction data and the results of the
Korringa–Kohn–Rostoker coherent potential approximation (KKR-CPA) electronic structure
calculations are available for the concentration dependence of the peak splitting. Secondly,
for several alloy compositions large sets of the SRO parameters were determined by the
Fourier inversion of the experimental SRO diffuse-scattering intensities. The latter type of
data are used as input for the calculations of the kind described in section 2.

The peak separationq was measured at equilibrium for various concentrations and
temperatures using electron [1–4] and x-ray [5–7] scattering. The splitting was observed
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Figure 2. The concentration dependence of the peak splittingq as measured [5] in the x-ray
diffraction experiment (circles, dashed line) and estimated [5] from the results of the KKR-CPA
electronic structure calculations [27] (squares, dotted line). The data are taken from table 1 in
[5]. The original KKR-CPA results [27] (triangles, solid line) are also shown. Straight lines
connecting symbols are for eye guidance only. Note that all of the data were originally given in
units of the distance between the (000) and (200) positions (equal to 2 r.l.u.) for the separation
m = √2q between the adjacent peaks.

Figure 3. The same as figure 2, but all available experimental data are presented ([1]—open
squares, about 800 K; [2]—open triangles, 773–893 K; [3]—open circles, about 700 K; [4]—plus
signs, 1073 K; [5]—crosses, 1023 K; [6]—asterisk, 773 K; [7]—open diamond, about 700 K),
in comparison with the KKR-CPA results [27] (filled triangles, solid line). The estimates made
in [5] are not shown.

for alloys with more than about 15 at.% Pd, and it increased monotonically with increasing
Pd content. Though very good agreement was noted by Gyorffy and Stocks (GS) [27]
between the electron diffraction [2] and their KKR-CPA results, the calculated values ofq

were systematically slightly higher than the experimental ones. The discrepancy became
noticeably larger in more recent measurements. In particular, Sahaet al [5] compared their
x-ray results for several compositions with the estimates that they made on the basis of the
GS KKR-CPA calculations [27]. They found that the experimental splitting was smaller in
all cases. The difference inq ranged from 0.014 to 0.034 reciprocal-lattice units (r.l.u.);
1 r.l.u. is the distance between the (000) and (100) positions. Their findings (table 1 in
[5]) are shown in figure 2, together with the original GS results for different concentrations
which were read off figure 2 in [27]. Surprisingly, all of the estimated values, presumably
calculated by interpolating the results of [27], lie below the GS line; the reason for this is not
clear. As a result, the disagreement between the experimental and theoretical values ofq is
even more pronounced than was reported in [5]. Figure 3 compares the KKR-CPA results
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with the collection of all of the experimental data for the splitting known to the authors.
It is seen that all the experimental points are located below the GS line. We propose an
explanation for this discrepancy which is given in section 4.

Table 1. Data for three Cu–Pd alloys for which sets of the SRO parameters are available:T

is the annealing temperature,Nα the number of the SRO parameters in the set,α
exp

000 andqexp

the experimental values ofα000 and q, respectively, andqrec corresponds to the recalculated
intensity (see the text). The splittingq is measured in r.l.u.

No at.% Pd Reference T (K) Nα α
exp

000 qexp qrec

1 21.8 [5] 1023 78 1.018 0.059 0
2 28.5 [5] 1023 78 1.014 0.151 0
3 29.8 [6] 773 72 1.786 0.184 0.162

Figure 4. Profiles of the recalculated SRO diffuse intensities for the alloys 1 (a), 2 (b) and 3 (c)
along the (h10) line. Variablek is a component of the wavevectork = (k, 1, 0). Note that there
is no splitting of the (110) peak for the first two alloys.

Sets of the SRO parameters were obtained in the concentration interval considered for
21.8, 28.5 [5] and 29.8 [6] at.% Pd in x-ray experiments. The samples were annealed at
some temperature corresponding to the disordered phase and then quenched. Hereafter these
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Figure 5. The recalculated SRO intensity along the (h00) line for the alloy 2 showing ranges
of negative values. Variablek′ is a component of the wavevectork = (k′, 0, 0).

alloys will be referred to according to their numbers in table 1 which contains data used
in the subsequent discussion. The splitting of the experimental (110) intensity peak was
detected for all three compositions. The SRO parameters for large numbers of coordination
shells were calculated by Fourier transforming the SRO part of the measured diffuse intensity
after having separated it from other intensity contributions. We recalculated the SRO diffuse
intensities for these three alloys using tables of the SRO parameters given in [5] and [6]
and the theoretical valueα000 = 1 instead of the experimental values. Such substitution
leads to a simple shift of the intensity and does not change its shape. Surprisingly, no
splitting of the (110) peak was found in the recalculated SRO intensities for the alloys 1
and 2 (figures 4(a) and 4(b)); in the case of the alloy 2 this circumstance has already been
noted elsewhere [28]. In addition, negative values of the recalculated SRO intensity were
found for the alloy 2 (figure 5). The origin of all of these inconsistencies is probably the
insufficient accuracy and/or number of the calculated SRO parameters. In contrast to these
two cases, the recalculated SRO intensity for the alloy 3 shows the experimentally observed
splitting (figure 4(c)). However, the corresponding value ofq is noticeably smaller than the
experimental result (table 1). As for the first two alloys, we find that the splitting tends to
decrease after the recalculation. The accuracy of the recalculated intensity seems to be better
for the alloy 3 as far as the magnitude of the splitting is concerned, though the deviation
of the integrated intensityα000 from unity, which often serves as an accuracy criterion in
diffuse-scattering experiments, is much larger than in two other cases (table 1).

4. Results and discussion

We assume that the discrepancy between the experimental and theoretical values ofq

discussed in section 3 is the result of the shift of the intensity peak position with respect
to the position of the corresponding minimum of the interatomic interaction [16]. In other
words, quantities which were measured and calculated were not the same. Indeed, what
GS actually calculated [27] using the KKR-CPA method were the Fermi surfaces and, in
particular, the Fermi wavevectorskF along the (110) direction for different concentrations.
These Fermi wavevectors were subsequently used to calculate the 2kF -related separation
m = √2q between the adjacent minima of the interactionV (k). Since the mean-field
(KCM) description of correlations was chosen, the resulting separation between the intensity
peaks was the same. However, it is generally different from the separation between the
V (k) minima and depends on temperature because of the temperature-dependent shift of
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Figure 6. The shift of the intensity peak position as a result of the wavevector dependence
of the self-energy. The behaviour of the SRO intensity, self-energy and interatomic interaction
along the (h10) line is shown schematically. The self-energy profile is as found for the three
Cu–Pd alloys discussed in the text (see figure 8 below). Dashed lines indicate the following
positions (left to right): (110), the intensity peak, the minimum of the interaction.

the intensity peak position [16]. The shift itself is the consequence of the wavevector
dependence of the self-energy (figure 6). This can be easily seen from either equation (2.1a)
(the direct problem) or equations (2.12), (2.13) (the inverse problem). Consider, e.g.,
equation (2.1a); the ISRO(k) peak positions are determined by the condition∇ISRO = 0,
which leads to

2∇V = T ∇6 (4.1)

while the positions of theV (k) minima are obtained from the equation∇V = 0. It is
clear from equation (4.1) that the extrema ofISRO(k) away from the special points are,
in general, different from those ofV (k). On the other hand, if the approximate self-
energy isk-independent (as in the KCM or the SM approximations), then the two equations
coincide and the intensity peak is not shifted. Figure 3 shows that the KKR-CPA calculations
overestimate the experimental peak splitting everywhere in the range of concentrations from
20 to 30 at.% Pd. In the framework of the suggestion about the shift of theISRO(k) peak
being the origin of the disagreement between experiment and theory, this means that the
intensity peaks are shifted towards the (110) position.

On the basis of this assumption, it is now possible to predict the temperature behaviour
of the splitting if another, sufficiently reasonable assumption is made. We assume that the
temperature dependence of the splitting is always monotonic (a non-monotonic behaviour
was never observed experimentally). If this assumption is correct, then the direction of the
shift at a particular temperature value can be related to its temperature dependence. At high
temperatures, corrections to the KCM approximation are small, and the absolute value of the
shift tends to zero, decreasing at least asT −1 with increasing temperature [16]. Therefore,
in the case of the monotonic behaviour of the splitting the direction of the shift is the same
at any temperature; the splitting increases with temperature, if the shift is towards the (110)
position, and decreases otherwise. For Cu–Pd alloys this would mean that the splitting
increases with temperature for all compositions in the range considered. This conclusion
is in agreement with the one made on the basis of the inverse-temperature hypothesis [1]
discussed in section 1 for alloys with 20, 22 and 24 at.% Pd, but it does not allow the change
of the temperature behaviour predicted by this hypothesis for the Cu–28 at.% Pd alloy.

The next step is to check this prediction using the experimental data discussed in
section 3. These data are quite limited, since sets of the SRO parameters are available
only for three compositions. They are also not of sufficient accuracy for the reproduction
of the fine structure of the (110) intensity peak. Only in one case, that of the alloy 3, is the
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Figure 7. AE effective pair interactionsVAE(k) along the (h10) line for the alloys 1 (a) and
3 (b).

corresponding set good enough (i.e., contains a sufficient number of the reasonably accurate
SRO parameters) to reproduce the experimentally observed splitting in the recalculated
diffuse intensity (figure 4). Even in this case, the recalculation changes noticeably the
magnitude of the splitting (see table 1). It seems that in this particular situation of the split
intensity peaks, even larger sets of the more accurately determined SRO parameters are
necessary. Nevertheless, the available sets can still be used to obtain information about the
temperature dependence of the peak separation. The straightforward approach to this task
described in section 2 is applicable only to the alloy 3. The solution of the inverse diffuse-
scattering problem given by equations (2.12) and (2.13) cannot be obtained for the alloy 2,
because the recalculated diffuse intensity becomes negative (figure 5); in this case the
inverse intensityI−1

SRO(k) and, therefore, the effective interatomic interactionVAE(k) would
contain unphysical singularities at those positions in thek-space where the diffuse intensity
vanishes. The inverse problem can be solved for the alloy 1, for which the recalculated
intensity is always positive. However, in this case the resulting interaction which follows
the shape of the intensity does not have a split minimum at the (110) position. The profiles
of VAE(k) for the alloys 1 and 3 are shown in figure 7.

The easiest quantity to calculate in the framework of the AE theory of SRO is the
direction of the shift. This can be done for all three alloys, despite problems with the
data for two of them as indicated before. According to equation (4.1), the direction of the
shift is determined by the reciprocal-space behaviour of the self-energy, and the latter can
be easily obtained by Fourier transforming equation (2.1c), i.e., calculating6od(k), and
using the experimental values of the SRO parameters. It is expected that the off-diagonal
part of the self-energy is much less sensitive to the accuracy of the{αlmn} set than the
profile of the split intensity peak itself; there is no special reason for the self-energy to
have any extrema away from the special points. Also,6od is of second order inαlmn
(equation (2.1c)) and therefore decreases in the direct space faster than the PCF, which
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Figure 8. Profiles of the off-diagonal part6od(k) of the AE self-energy along the (h10) line
for the alloys 1 (a), 2 (b), and 3 (c). The maximal possible numberNα of coordination shells
(table 1) was used in each case.

means that the distant SRO parameters are less important for its calculation. The results of
such a calculation are presented in figure 8. The convergence of the results with respect to
the number of coordination shells included in the AE approximation improves rapidly with
increasing concentration; to achieve very good convergence, about 40, 20 and 5 shells are
necessary for the alloys 1, 2 and 3, respectively. In all three cases6od(k) has a maximum
at the (110) position, and from equation (4.1) it follows that the intensity peaks are shifted
towards this position (see figure 6). This result is in agreement with our interpretation of
the discrepancy between the experimental and the KKR-CPA values ofq.

The actual value of the shift can be calculated only for the alloy 3, since for the other
two alloys positions of peaks of the recalculated intensity and minima of the AE interaction
are unavailable. The ten-shell AE approximation was used for this and all other calculations
discussed in the rest of the paper. The result is 0.018 r.l.u.; it should be compared with
the deviations of the experimental points from the GS line in figure 3. The deviation for
the alloy 3 calculated by the linear interpolation of the GS results is 0.022 r.l.u., which is
very close to the result obtained in the AE calculation. If we assume that the AE shift
is about the same for both the experimental and recalculated intensities, then the position
of the VAE(k) minimum for the former just falls on the GS line. The deviations of other
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Figure 9. The AE self-energy6(k) ((a), (c)) and the related functionf (k) defined by
equation (4.2) ((b), (d)) along the (h10) line for the alloys 1 ((a), (b)) and 3 ((c), (d)) at several
equidistant temperatures. Indicated are maximal and minimal temperatures; the temperature steps
are 25 K ((a), (b)) and 50 K ((c), (d)). The KCM values for the self-energy (equation (4.3)) are
6KCM = −5.87 (a) and6KCM = −4.78 (c).

experimental points are of the same order of magnitude.
The change of the splitting with temperature can be analysed for the two cases (alloys 1

and 3) in which the inverse problem can be solved. This is done by calculating the self-
energy as a function of temperature. Let us consider the profile of the self-energy along
the (h10) line. Along this line the self-energy is a function of just one componentk of the
wavevectork = (k, 1, 0). We define a function

f (k) = T ∂6
∂k

(4.2)

whose temperature dependence, according to equation (4.1), determines that of the splitting.
The functions6(k) andf (k) at different temperatures for the two alloys are displayed in
figure 9. Accuracy checks show that the ten-shell approximation works very well for the
alloy 3 and is still satisfactory (though noticeably worse) in the case of the alloy 1. Note
that the AE results for the self-energy differ considerably from its KCM values; the KCM
expression for the self-energy can be obtained, e.g., from the comparison of equations (2.9)
and (2.14):

6KCM = − 1

c(1− c) . (4.3)

In both cases the absolute value off (k) decreases with increasing temperature for any given
value ofk, which corresponds to the increase of the splitting with temperature. This result
agrees with the conclusion based on the assumption of a monotonic temperature dependence
of the splitting which was made earlier in this section.

Finally, a quantitative calculation of the temperature dependence of the intensity peak
position q can be carried out, as before, for only one composition (alloy 3). The
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Figure 10. AE intensity profiles along the (h10) line for the alloy 3 at several equidistant
temperatures. The temperature range and step are as in figures 9(c) and 9(d).

Figure 11. The intensity peak positionq as function of temperature for the alloy 3 (filled
triangles, solid line). The results for three other compositions (open symbols, dashed lines), 20
(circles), 24 (squares) and 28 (triangles) at.% Pd, calculated using the same AE interaction are
also shown.

corresponding intensity profiles are presented in figure 10, while figure 11 shows results for
the functionq(T ) for this composition, as well as for three other concentrations covering
the interval which was considered in [1]. In all of the calculations the same AE interaction
(namely, that obtained by solving the inverse problem for the alloy 3; see figure 7(b)) was
used. The aim was to find out whether the variation of composition for a concentration-
independent interaction would lead to any particular change of the functionq(T ). No such
change takes place, as is seen from figure 11; the splitting increases monotonically with
temperature for all four alloy concentrations.

In summary, we studied theoretically the temperature dependence of the Fermi surface-
induced splitting of the (110) SRO diffuse intensity peak for Cu–Pd alloys under equilibrium
conditions. The comparison was made with experimental observations for these alloys in a
steady state under irradiation. The validity of the inverse-temperature hypothesis proposed
previously to relate the two regimes was examined. At equilibrium this hypothesis predicts
the qualitative change of temperature behaviour near the Cu3Pd composition, namely, the
increase of the splitting with increasing temperature in the composition interval 20 to 24
at.% Pd and its decrease with temperature as the concentration of Pd increases to 28 at.%.
Comparing available electron and x-ray scattering data with the results of the KKR-CPA
electronic structure calculations, we found that the theoretical approach overestimated the
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experimental splitting. This disagreement was interpreted as the result of the shift of the
diffuse intensity peaks with respect to the positions of the corresponding minima of the
effective pair interatomic interaction towards the (110) position. An additional assumption
about monotonicity of the temperature dependence of the splitting led to a connection
between the direction and temperature behaviour of the peak shift. Under this assumption the
shift towards the (110) position is equivalent to the increase of the splitting with increasing
temperature. For Cu–Pd alloys this means that the splitting increases with temperature
for all concentrations in the compositional range considered. This conclusion seems to
be confirmed by the AE calculations, which are, however, based on limited experimental
data. It agrees with the prediction of the inverse-temperature hypothesis for lower Pd
concentrations (20 to 24 at.%) but, contrary to this prediction, does not allow any reversal
of the temperature behaviour with increasing concentration of Pd. It also contradicts
the results of recent computer simulations [17] and x-ray measurements [7] for higher
Pd content (25 and 29.8 at.%, respectively), according to which the splitting is (almost)
temperature independent. These results are consistent, on the other hand, with the reversal
scenario. Among possible reasons for this disagreement are (i) limited validity of the
inverse-temperature hypothesis, (ii) insufficient accuracy and/or size of the available sets
of the experimental SRO parameters, (iii) the pair character of the interatomic interactions
used in the AE theory of SRO and (iv) the approximate character of the AE calculations.
Further direct measurements of the splitting as a function of temperature (as in [7]) for the
range of compositions discussed are necessary to clarify the situation.
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